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Abstract

Lung disease caused by nontuberculous mycobacteria (NTM) is an emerging infectious

disease of global significance. Epidemiologic studies have shown the Hawaiian Islands

have the highest prevalence of NTM lung infections in the United States. However, poten-

tial environmental reservoirs and species diversity have not been characterized. In this

cross-sectional study, we describe molecular and phylogenetic comparisons of NTM iso-

lated from 172 household plumbing biofilms and soil samples from 62 non-patient house-

holds and 15 respiratory specimens. Although non-uniform geographic sampling and

availability of patient information were limitations, Mycobacterium chimaera was found to

be the dominant species in both environmental and respiratory specimens. In contrast to

previous studies from the continental U.S., no Mycobacterium avium was identified. Myco-

bacterium intracellulare was found only in respiratory specimens and a soil sample. We

conclude that Hawai’i’s household water sources contain a unique composition of Myco-

bacterium avium complex (MAC), increasing our appreciation of NTM organisms of pulmo-

nary importance in tropical environments.

Author Summary

In the U.S., the Hawaiian Islands have the highest number of nontuberculous mycobacte-
rial (NTM) lung disease cases per capita. The tropical climate, geographical isolation of
the islands, and aquifer water sources may have influence such prevalence. Previous stud-
ies suggest that NTM thrive in water biofilms and soil. To broaden our understanding of
potential environmental reservoirs and species composition of NTM in the Hawaiian
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Islands, we sampled environmental sites and examined patient isolates. Our recovery and
identification of Mycobacterium chimaera and several other clinically relevant NTM spe-
cies and the absence of Mycobacterium avium in both the indigenous environment and
clinical specimens underscore the need for further studies to define the environmental fac-
tors that drive NTM lung disease and species composition in high prevalence locations
such as the Hawaiian Islands.

Introduction

Nontuberculous mycobacteria (NTM) are ubiquitous inhabitants of natural and human-engi-
neered environments. To date, there are over 175 species of NTM with standing in nomencla-
ture [1]. They range in virulence from benign environmental microorganisms to difficult-to-
treat human pathogens [2]. Potentially pathogenic NTM have been documented in households,
institutions (i.e., hospital premise plumbing), and soil [3]. In the continental United States (U.
S.), household plumbing and environmental aerosols are thought to be important point sources
of infection [4–8]. The most common NTM species to cause lung disease in the continental U.
S. are those of the Mycobacterium avium complex (MAC)–slowly growing mycobacteria
(SGM) that include Mycobacterium avium subsp. “hominissuis” and Mycobacterium intracellu-
lare [9]. Clinically relevant environmental rapidly growing mycobacteria (RGM) include Myco-
bacterium abscessus subsp. abscessus, massiliense, and bolletii as well as the closely related
species, Mycobacterium chelonae [10]. The current hypothesis is that NTM lung infections fol-
low exposure to NTM from the home or other environmental source. [6]. Of interest, the pre-
dominant NTM species responsible for lung disease varies by geographic region, suggesting
that environmental conditions (e.g., pH, oxygen, organic matter, and salinity) and the presence
of other microorganisms influenceNTM species numbers and diversity [11].

Despite the almost universal exposure to environmental NTM, pulmonary infections are
relatively rare in otherwisehealthy, non-bronchiectatic individuals and more common in indi-
viduals with abnormal lung architecture such as bronchiectasis and emphysema [12]. Never-
theless, it is important to identify the environmental niches that harbor potentially pathogenic
NTM in geographical areas with a high prevalence of disease. In the U.S., the Hawaiian Islands
were found to have the highest period prevalence of NTM lung disease (396 cases/100,000 per-
sons for a total ten year time period) in a sampling of 2.3 million Medicare Part B beneficiaries
enrolled from 1997 to 2007 [13]. In a follow-up study, spatial modeling revealed high-preva-
lence locations for NTM lung disease in this state [14]. The Hawaiian Islands also showed the
highest age-adjusted mortality rates from NTM lung disease in the U.S., particularly in women
over 55 years of age [15].

The high prevalence of NTM lung disease in the Hawaiian Islands provided the impetus to
explore potential sources of infection and to determine the predominating NTM species in
both environmental and clinical specimens. These islands are recognized for their unique
island geology, flora, and fauna which are largely impacted by the tropical climate and isolation
of the archipelago in the Pacific Ocean. Unlike most areas in the continental U.S. for which sur-
face water serves as the primary public water source, underground aquifers provide water
there. The Hawaiian Islands are also home to the highest number of elderly Asian-Pacific
Islanders in the U.S.—a population previously recognized to be more susceptible to NTM
infection [14]. To better understand NTM lung disease as a neglected tropical disease of emerg-
ing importance in this geographic area, the objective of the current work was to employ state-
of-the-art molecular techniques to describe the indigenous NTM species composition in
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indoor and outdoor environments. A secondary objective was to analyze the genetic related-
ness between the Hawaiian Island environmental NTM specimens (including 15 patient respi-
ratory specimens) and continental U.S. NTM isolates.

Methods

Environmental sampling

In this cross-sectional study, we use the term “Hawaiian Islands” to designate the eight islands
of the State of Hawai’i; the term “Hawai’i” refers to the youngest and largest island among the
eight islands. Sample collectionwas conducted betweenDecember 2012 and January 2013. Sam-
ples were collected from 62 non-patient households located on the islands of Oahu, Molokai,
Kauai, and Hawai’i. Detailedwritten instructions for collectinghousehold water biofilms and soil
samples were provided to local residents who volunteered to collect samples from their home as
part of this study. As NTM are most commonly found in premise plumbing biofilms, samples
were obtained by swabbing with sterile cotton-tipped applicators the inner surface of shower-
heads, kitchen and bath faucets, kitchen sink sprayers, refrigerator water dispensers, laundry
room sinks, and shower drains [5, 6]. Samples from random sites in outdoor gardens or yards
were also collected by clearing away surface leaves and other detritus and then scooping soil from
the top five centimeters of ground into sterile 50 ml conical screw cap tubes as described [16].

Pilot samples of patient isolates

Respiratory isolates of slowly-growing NTM recovered from 15 de-identifiedOahu patients
suspected of mycobacterial lung disease whose sputum had been submitted for mycobacterial
culture were randomly selected from saved isolates at Diagnostic Laboratory Services, Inc.
(Aiea, HI). Mycobacterium tuberculosis was not recovered in any of these sputum samples
where NTM were isolated. As these were de-identified patient residual isolates, where only age
and gender were noted from routinely ordered laboratory testing, Institutional ReviewBoard
(IRB) consent was waived. However, it was impossible to determine whether these patients met
current American Thoracic Society/Infectious Disease Society of America (ATS/IDSA) diag-
nostic criteria for NTM pulmonary disease as private health information were delinked [9].

Species and subspecies identification of NTM isolates by partial rpoB

gene sequencing

Genome identification of environmental and patient NTM isolates was conducted through the
amplification and sequencing of a 723 bp segment of the RNA polymerase beta subunit (rpoB)
gene, also known as region 5 [17]. Sequences were trimmed for quality and compared against
rpoB type strain sequences deposited in the National Center for Biotechnology Information
(NCBI) GenBank using the BLAST algorithm. Definitions of species by single genes or spacer
region were those of the Clinical Laboratory Standards Institute (CLSI) [18]. A sequence simi-
larity cutoff of� 98.3% was used to determine the species identification according to previ-
ously described cutoffs validated by studies of rapidly-growing mycobacteria [17]. The
sequencing of NTM strains derived from patients was approved by the National Jewish Health
Human Subject IRB.

Non-Hawaiian Island NTM patient isolates

To determine whether NTM isolates from the Hawaiian Islands have shared sequence similar-
ity with isolates obtained elsewhere, NTM type strains were included in genetic analyses. Type
strains are denoted by superscript “T” and include M. porcinum CIP 105392 T, M. abscessus

Environmental Mycobacteria in Hawai’i

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005068 October 25, 2016 3 / 17



subsp. abscessus ATCC 19977T, M. abscessus subsp. bolletii CIP 108541T, M. chelonae ATCC
35752T, and M. chimaera CIP 107892 T. Additionally, 33 clinical respiratory isolates of M. chi-
maera (one per patient) from seven other states–Maryland, Texas, Louisiana, North Carolina,
Oregon, Mississippi, and Arkansas–submitted for molecular identification to the Nocardia/
Mycobacteria Research Laboratory, University of Texas Health Science Center, Tyler, Texas
were included. Those isolates were identified to species by partial 16S rRNA and region 5 rpoB
gene sequencing. This work was approved by the Human Subjects Committee of the University
of Texas Health ScienceCenter, Tyler, Texas.

Nucleotide accession numbers

Partial rpoB gene sequences from 166 Hawaiian Island NTM isolates and 33 M. chimaera iso-
lates from the continental U.S. were deposited in the GenBank nucleotide database. The Gen-
Bank accession numbers for type strain and representative isolate rpoB gene sequences of M.
porcinum, M. abscessus, M. chelonae, and M. chimaera from NCBI are also listed in S1 Table

Phylogenetic and sequence variant network analyses

Partial rpoB sequences of respiratory and environmental NTM isolates (n = 166) were aligned
using MUSCLE [19] and sequence alignments were trimmed to remove missing data from the
ends of the final alignment. Phylogenetic trees were generated using the neighbor-joining
method based on the number of nucleotide differences and uniform rates among sites while
omitting any sites in the alignment with gaps or missing data in MEGA version 6 [20].

For rpoB sequence variant analyses, only sequences greater than 600bp and with no ambigu-
ous base calls were included. Sequences were grouped by species and compared to selected type
and non-type strain sequences from NCBI. The PopART population genetics software was
used to examine intraspecies sequence variation, generate species-specific rpoB sequence vari-
ant networks, and label isolates by isolation source: i.e., kitchen, bathroom, soil, patient [21].
For the M. porcinum, M. abscessus, and M. chelonae analyses, the environmental Hawaiian
Island isolates and both type and non-type strains were included. For the M. chimaera analysis,
environmental and clinical Hawaiian Island isolates, type, and non-type strains, as well as clini-
cal isolates from seven states across the continental U.S. were included.

Statistical analyses

Statistical analyses were performed using R version 2.13.2 [22]. Fisher’s Exact Tests were used
to evaluate differences in proportions of NTM species or species groups between household
areas (i.e., bathroom, kitchen, and soil) or sample type (biofilm and soil).

Results

Environmental Areas Sampled

From a total of 62 households across four islands (Fig 1A), a total of 172 biofilm and soil sam-
ples were collected. The majority of the samples (n = 134, 78%) were collected from Oahu and
included 35 showerheads (26%), 41 kitchen faucets (31%), 6 bathroom sink faucets (4%), 2
refrigerator water taps (1%), 3 other biofilm samples from laundry room faucets (2%), and 47
soil samples (35%). The remaining 38 samples (22%) were collected from 13 households on the
neighbor islands.

Among all 172 biofilm and soil samples collected from the 62 households, NTM were iso-
lated from 44% of samples (75/172) (Table 1).NTM were identified in nearly half of the sam-
ples on Oahu (65/134, 49%) and in approximately a quarter of samples from the neighbor

Environmental Mycobacteria in Hawai’i

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005068 October 25, 2016 4 / 17



Fig 1. Environmental sampling for NTM. A) Biofilm swabs and soil samples were collected from 62 households on four of

eight principal Hawaiian Islands. The numbers and proportions of total households from which NTM were recovered are

shown. B) Locations of households sampled in towns across the island of Oahu. Colored triangles indicate sampling sites

with biofilm or soil samples that were positive for presence of NTM (red) or negative for NTM (blue). C) The number of NTM

species recovered from each household was calculated. Shown are the proportions of households harboring zero NTM

species/household, one NTM species/household, two NTM species/household or three different NTM species/household.

doi:10.1371/journal.pntd.0005068.g001
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islands (10/38, 26%). Overall, the NTM culture positivity rate for biofilms was 59% (67/113),
which was significantly greater than for soil (14%, 8/59; p = 6.0x10-9).

NTM Recovered by Household

The majority of the environmental samples collectedwere from 49 households in seven differ-
ent towns on Oahu, the most populated island (Fig 1B). NTM were recovered by culture from
82% of the Oahu households (Fig 1A). For the neighboring islands, NTM were also recovered
in households on Kauai, Molokai, and Hawai’i (Fig 1A). Among the 62 collective households
sampled in this study, only 14 had no NTM isolated (23%). However, the number of house-
holds with one, two, and three different NTM species isolated were 26/62 (42%), 18/62 (29%),
and 4/62 (6%), respectively (Fig 1C). Overall, the majority of households (43/62, 69%) had at
least one clinically relevant species of MAC, M. abscessus subsp., or M. chelonae—(Table 2).

NTM Recovery in Non-Household Samples

To determine the diversity of NTM in non-household sites, 13 environmental samples (n = 7
biofilm and n = 6 soil) were collected from eight public areas on Oahu and Kauai (Table 3).
On Oahu, a total of six biofilms from public sites were collected including gymnasium shower-
heads and water fountain taps. Four soil samples were also collected from public sites on Oahu.
Two water biofilm and two soil samples were collected from public sites on Kauai. One Oahu
public site soil sample contained M. chimaera (1/6 = 17%) and one biofilm sample contained
M. chelonae (1/7 = 14%), but the majority (5/13 = 38%) yielded other RGM species (i.e., M.
barrassiae, M. alvei, and M. septicum). RpoB sequences from four distinct isolates did not have
NCBI database matches above 95% sequence identity, suggesting they represent novel species.

Spectrum of NTM Species Identified from Environmental Samples

Among the 75 environmental samples from the households that were NTM culture-positive,
20 different NTM species were identified (Fig 2A) and 17% (13/75) grew out multiple NTM

Table 1. Description of household biofilm and yard/garden soil sampling and proportions of samples that were NTM culture-positive.

Oahu Kauai Molokai Hawai’i

n = 49 n = 5 n = 4 n = 4

# # % # # % # # % # # %

samples NTM+ NTM+ samples NTM+ NTM+ samples NTM+ NTM+ samples NTM+ NTM+

Showerhead 35 24 69% 5 4 80% 5 1 20% 2 0 0%

Kitchen 41 24 59% 3 2 67% 5 1 20% 3 1 33%

Bathroom 6 4 67% ND ND ND ND ND ND 2 0 0%

Refrigerator tap 2 2 100% ND ND ND ND ND ND ND ND ND

Other 3 3 100% 1 1 100% ND ND ND ND ND ND

Total Biofilms 87 57 66% 9 7 78% 10 2 20% 7 1 14%

Soil 47 8 17% 3 0 0% 5 0 0% 4 0 0%

Total 134 65 49% 12 7 58% 15 2 13% 11 1 9%

Total households sampled = 62

Total number of samples collected from households = 172 (n = 113 biofilm samples and n = 59 soil samples)

Total NTM culture positive samples = 75/172 (44%)

Other includes laundry and bedroom faucets

ND = Not done

doi:10.1371/journal.pntd.0005068.t001
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species. The most common species recovered from households were MAC organisms with M.
chimaera being the predominant species (42/75, 56%) (Fig 2B, left).The next most frequently
isolated species were M. chelonae (12/75, 12%) and M. porcinum (11/75, 11%). All isolates of M.
abscessus were confirmed as M. abscessus subsp. abscessus (10/75, 10%) [23, 24]. Less frequently
isolated NTM species (<10%) included M. phocaicum, M. gadium, M. alvei, M. gordonae, M.
paraffinicum, M. marseillense, and M. colombiense. No isolates of M. avium or M. intracellulare
were recovered from household biofilm samples, though M. intracellulare was isolated from a

Table 2. NTM species and combinations of species recovered from 62 households sampled from the Hawaiian Islands (includes biofilm and soil

samples).

NTM species # of households # of NTM species per household High clinical prevalence NTM species*

None 14 0 N/A

M. avium complex (MAC)** 16 1 yes

M. abscessus or M. chelonae 5 1 yes

M. porcinum 3 1 no

Other NTM 2 1 no

M. abscessus or M. chelonae + other NTM 4 2 yes

MAC + M. abscessus or M. chelonae 6 2 yes

MAC + M. porcinum 4 2 yes

MAC + other NTM 4 2 yes

MAC + M. abscessus + other NTM 4 3 yes

* NTM species associated with high clinical prevalence in previous epidemiological studies. Ref 10, 11.

** M. avium complex (MAC) includes M. chimaera and M. intracellulare. M. intracellulare was not recovered from biofilm samples, only a soil sample. M.

avium was not recovered from any of the species examined.

doi:10.1371/journal.pntd.0005068.t002

Table 3. Description and NTM recovery in non-household samples.

Type of sample: Source of sample: NTM species identified: Town, Island:

1. a) Soil a) Gym a) None Pearl City, Oahu

b) Biofilm swab b) Hot tub (n = 1) b) None

2. a) Soil a) Fruit cannery a) M. chimaera Wahiawa, Oahu

b) Biofilm swab b) Water fountain (n = 1) b) M. gordonae

c) Potential novel species *

3. a) Soil a) Cemetery a) M. barrassiae Waipio, Oahu

b) Biofilm swab b) Outdoor faucet (n = 1) b) None

4. a) Soil a) Gym^ a) Potential novel species* Hawai’i Kai, Oahu

b) Biofilm swab b) Water fountain (n = 1) b) Potential novel species**

c) Biofilm swab c) Showerhead (n = 1) c) None

d) None

5. Biofilm swab Water fountain at a pier (n = 1) M. gordonae Honolulu, Oahu

6. Biofilm swab Water fountain at tourist stop (n = 1) M. chelonae Waimea, Kauai

7. Soil Tourist stop (n = 1) a) M. alvei Waimea, Kauai

b) Potential novel species***

8. Soil Grotto (n = 1) M. septicum Kapa’a, Kauai

* 93% identity to M. gadium

** 90% identity to M. jacuzzii

*** 94% identity to M. alvei and M. fortuitum.
^ The only non-household site out of eight from which more than one household biofilm sample was collected.

doi:10.1371/journal.pntd.0005068.t003
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Fig 2. Diversity and frequency of NTM species recovered from environmental samples. A)

Phylogenetic analysis was performed from a multiple sequence alignment of partial rpoB sequences to

illustrate the distribution of SGM and RGM isolates identified among environmental samples. Bolded names

indicate NTM species in which more than one isolate was identified across the sample set. B) Proportions of

samples positive for NTM species are shown for households (n = 75) and non-household sites (n = 9).

doi:10.1371/journal.pntd.0005068.g002
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single soil sample. While M. chimaera and M. chelonae were identified in non-household sam-
ples, the majority classified as other NTM included potentially novel species (Fig 2B, right).

NTM Predominating in Household Locations

To determine whether NTM were present in particular household locations, the frequencies of
NTM recovery between bathroom biofilms, kitchen biofilms, and soil were compared (Fig 3).
M. chimaera was frequently identified from both bathroom (22/34, 65%) and kitchen (15/30,
50%) biofilms and was also identified in soil (2/7, 29%). M. porcinum was overrepresented in
bathroom (8/34, 24%) compared to kitchen biofilms (2/30, 7%; p = 0.09), while M. chelonae
was significantly more common in kitchen (9/30, 35%) compared to bathroom biofilms (3/34,
9%; �p = 0.05). M. abscessus was observed in similar proportions between bathroom (5/34,
15%) and kitchen (4/30, 13%) biofilms. M. porcinum, M. chelonae, and M. abscessus were not
recovered from soil. M. marseillense was recovered only from soil and not identified in any of
the household biofilm samples. NTM species that showed low prevalence in our study (i.e., one
isolate per species identified in the entire sample set and labeled “other RGM” and “other
SGM”) were primarily isolated from soil samples.

Genetic Diversity of Environmental RGM Isolates

To examine population diversity among RGM isolates from individual households, rpoB
sequences of M. porcinum, M. abscessus, and M. chelonae were analyzed (Fig 4). Type and non-
type strain rpoB sequences were included for comparison. In the M. porcinum dataset (n = 25

Fig 3. Household distribution of NTM species. Proportions of household samples harboring various NTM

species are shown. Statistical comparisons between household locations were performed by Fisher’s exact

tests (*p = 0.05).

doi:10.1371/journal.pntd.0005068.g003
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sequences), a total of seven sequence variants were identified (Fig 4A). All isolates from the bath-
room, kitchen, and outside faucets were in the same sequence variant group as the M. porcinum
type strain, CIP 105392T, except for one kitchen isolate that contained a single SNP difference.
Among all M. abscessus sequences (Hawaiian Island and type/reference strains; n = 38), six
sequence variants of subsp. abscessus, four variants of subsp. massiliense, and one of subsp.bolletii
(Fig 4B)were identified. Environmental M. abscessus isolates groupedwith other M. abscessus
subsp. abscessus and the majority of M. abscessus isolates (13/16 = 81%) shared an identical rpoB
sequencewith the type strain, ATCC 19977T. Three additional isolates differed by one SNP each
from the ATCC 19977T type strain. Finally, M. chelonae isolates (Fig 4C) showed the greatest
rpoB sequence variation with a total of 14 rpoB sequence variants. Hawaiian Island M. chelonae
isolates fell into seven rpoB sequence variant groups, but the majority (15/20 = 80%) fell into two
main subgroups: one group (6/15 and 40%) sharing the M. chelonae ATCC 19237 rpoB variant
and a second group (5/15 and 33%) related to the M. chelonae ATCC 35752T rpoB variant.

Genetic Diversity of Environmental and Clinical M. chimaera Isolates

As the majority of the Hawaiian Island environmental NTM isolates from this study were M.
chimaera, 15 random respiratory SGM isolates from Oahu patients presenting to a pulmonary

Fig 4. Distributions of rpoB sequence variants detected among Hawaiian Island environmental isolates of M. porcinum, M. abscessus, and M.

chelonae compared to type strains. Sequence variant networks were created based on alignments of partial rpoB gene sequences for: A) M. porcinum

(n = 25 total sequences, out of 615 positions) B) M. abscessus (n = 38 total sequences, out of 610 positions) and C) M. chelonae (n = 35 total sequences,

out of 613 positions). Pie charts were used to indicate the distribution of isolates from different sources sharing an identical rpoB variant. Colors reflect

distinct isolate sources. Hash marks indicate SNP differences between adjacent isolate subgroups. Isolates per rpoB variant (n = X) are specified for each

variant occurring in more than one isolate. Type strains are indicated next to their designated variant group and are denoted by superscript “T.”

doi:10.1371/journal.pntd.0005068.g004
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clinic with suspectedmycobacterial lung disease were used as pilot samples to evaluate for the
presence of M. chimaera in clinical specimens. As a group, the median age of the 15 patients
was 75 years (95% CI, 68; 81 years) and 67% (10/15) were female (Table 4). Ten isolates were
identified as M. chimaera (10/15, 67%), four as M. intracellulare (4/15, 27%), and one as M.
marseillense (1/15, 6%). Of the ten patients with M. chimaera, 60% (6/10) were female. All four
patients with M. intracellulare were female (100%; 5/5) and the patient with M. marseillense
was male (Table 4). M. avium was not identified from any of the Oahu clinical isolates.

To measure the genetic similarity among a diverse collectionof environmental and clinical M.
chimaera, we analyzed rpoB sequence variation between the 57 Hawaiian Island environmental
M. chimaera isolates and the 10 Oahu respiratory M. chimaera isolates. However, the rpoB
sequence of one clinical M. chimaera isolate was excluded from these analyses due to the presence
of ambiguous bases. Also included were NCBI non-type strains (n = 2), type strains (n = 2), and
other M. chimaera respiratory isolates (n = 33) from seven states in the continental U.S. In total,
103 M. chimaera sequenceswere analyzed and only two rpoB sequence variants were observed
(Fig 5). The larger variant subgroup comprised over 90% of the isolates including all of the Oahu
respiratory and biofilm M. chimaera isolates. This group also contained the majority of continen-
tal U.S. clinical isolates and the CIP107892T type strain. The smaller variant subgroup contained
continental U.S. clinical isolates, non-type strains from NCBI, and Hawaiian Island soil isolates.

Discussion

To our knowledge, this is the first assessment of environmental NTM prevalence and species
composition in the Hawaiian Islands. This archipelago is approximately halfway between the
continental U.S. and Asia; thus, one might speculate that the spectrumof NTM observedmir-
rors the results from other environmental studies from the continental U.S. or Asia. Due to the
prevalence of M. avium subsp. “hominissuis” reported in studies from the continental U.S. and
Japan [25–27], we suspected this species would be prevalent in Hawaiian Island household bio-
films and patient samples; however, it was seemingly absent, at least in the samples examined
in this study. In general, NTM are rare in groundwater [29] whereas M. avium subsp. “hominis-
suis” has been isolated from surface water sources [28]. Aquifers provide most of the drinking
water in the Hawaiian Islands [30] which may be one reason for the lack of M. avium detection

Table 4. NTM species identified and demographic information of 15 pilot Oahu clinical isolates.

NTM Identified: Age (yrs) Gender

1. M. chimaera 57 F

2. M. chimaera 54 F

3. M. chimaera 73 F

4. M. chimaera 67 F

5. M. chimaera 89 F

6. M. chimaera 65 F

7. M. chimaera 74 M

8. M. chimaera 80 M

9. M. chimaera 87 M

10. M. chimaera 79 M

11 M. intracellulare 90 F

12. M. intracellulare 67 F

13. M. intracellulare 70 F

14. M. intracellulare 87 F

15. M. marseillense 78 M

doi:10.1371/journal.pntd.0005068.t004
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Fig 5. Distribution of rpoB sequence variants among Hawaiian Island environmental and clinical

isolates of M. chimaera compared to type strains. A sequence variant network was created based on an

alignment of partial rpoB gene sequences (n = 103 total sequences, out of 591 positions) including

environmental and Oahu clinical isolates. Hash marks indicate SNP differences between adjacent isolate

subgroups (circles). Isolates per rpoB variant (n = X) are specified for each observed variant. Type and non-
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in our samples. However, given the widespread prevalence of M. chimaera and the RGM in
Hawaiian Island household biofilms, local aquifers may be a potential reservoir for M. chi-
maera and other NTM. Future studies are needed to examine this hypothesis.

To date, species diversity assessments of environmental NTM in other tropical Pacific
Islands remains scant. A recent study described the identification of the M. fortuitum complex
in Polynesian residents with suspected tuberculosis [31] and other reports from the area high-
light NTM-associated skin disease [32, 33]. On Australia, M. intracellulare was reported as the
species responsible for most lung disease cases and yet only M. avium subsp. “hominissuis”, M.
kansasii, and M. abscessus isolates had a species that match between patients and their house-
hold water system [34, 35].

An unexpected finding of this study was the frequent identification of M. chimaera from
both the environmental samples collected from bathroom, kitchen, and soil samples (Fig 3)
and patient isolates with suspectedmycobacterial lung disease. Although the number of patient
isolates was small and their disease status were not known, the correspondence between the
high proportion of both environmental and clinical M. chimaera isolates is intriguing and
offers direction for future investigations. M. chimaera was first described in 2004 [36] and was
recently reported to cause health-care associated infections after open-heart surgery with the
use of heater-cooler units [37, 38]. As this is a relatively newly described species, there are no
simple methods to differentiate M. chimaera from M. intracellulare. Furthermore, low fre-
quency of presence in lung samples of patients from Germany, Italy, Zambia, and China [39–
41] is most likely due to its misidentification as M. intracellulare. A greater adoption of more
refined molecularmethods to distinguish M. chimaera from M. intracellulare has facilitated
the more precise speciation of M. chimaera (33). In a previous U.S. study, water biofilm isolates
originally reported as M. intracellulare, proved to be M. chimaera or other MAC-X [4]. Provi-
sionally, it appears that the main environmental source of M. chimaera in the Hawaiian Islands
are water biofilms and less from the soil (Fig 3), whereas M. intracellulare was absent in water
biofilms and only recovered from soil, consistent with the finding of others [4] (Fig 3, other
SGM). Soil should also be regarded as a potential reservoir for M. marseillense.

Among our environmental samples, M. porcinum, M. chelonae, and M. abscessus were the
most frequently identified RGM species. The M. fortuitum complex including M. porcinum
were found to comprise the majority of clinical isolates examined in French Polynesia (42/87,
48%) using partial rpoB gene sequencing [31]. Of these, M. porcinum was identified in three
patients who fulfilledATS criteria for NTM lung disease. To our knowledge, M. porcinum
infections have not yet been reported in the Hawaiian Islands, but the organism has been iso-
lated from water supplies in other U.S. areas (e.g., Texas) [42, 43]. M. abscessus was recently
associated with an outbreak in cystic fibrosis patients at a hospital in Hawai’i [44]. M. chelonae
infectionwas reported in a case study of an individual from Hawai’i after laser in situ kerato-
mileusis (LASIK) surgery [45]. It is important to mention that among the environmental sam-
ples in this study, these particular RGM were more commonly identified in bathroom and
kitchen biofilm samples and absent from soil (Fig 3), suggesting a preferential environmental
niche for these particular RGM species.

Phylogenetic analyses were performed to evaluate whether the genetic diversity among envi-
ronmental NTM species identified from the Hawaiian Island samples differed from those col-
lected from the continental U.S. A relatively high genetic diversity among M. chelonae was
observedwith four major rpoB subgroups present, while most isolates of M. porcinum and M.

type strain sequences and random clinical isolates from the continental U.S. were included for comparison.

The M. chimaera type strain is denoted by superscript “T”.

doi:10.1371/journal.pntd.0005068.g005
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abscessus belonged to one major genetic group per species (Fig 4). The presence of only two
genetic subtypes of M. chimaera among a geographically diverse population of environmental
and suspect respiratory Oahu specimens, as well as clinical isolates from seven other states in
the continental U.S. suggests a low level of genetic divergence occurring in this species (Fig 5).
Whole genome sequence comparisons will be necessary to improve our understanding of the
genetic relationships between environmental and respiratory populations of M. chimaera.

This study has some limitations including the following in methodology: (i) we were unable
to consistently collect a large number of samples from the same indoor sites for each participat-
ing household, (ii) a sampling bias exists as the majority of samples were collected from Oahu
(home to the majority of the state’s population) with only a few household samples collected
from the less populated Molokai, Kauai, and Hawai’i and none from Kaho’olawe, Maui, Lanai,
or Ni’ihau, and (iii) instead of a single person conducting all environmental sampling, house-
hold areas were sampled by local citizens, which added a layer of non-equivalency to the pro-
cess of sample collection.To reduce non-uniformity in the collection process, we applied a
well-accepted citizen science approach to minimize variability introduced by handling of sam-
ples by different people [46]. Although we cannot be certain our findings represent the true
geographic diversity of NTM in the Hawaiian Islands, this work describes the largest study of
environmental NTM in this geographic area with a documented high NTM disease burden.
We would advocate for a larger, randomized systematic study of the distribution of environ-
mental NTM in future work. To the best of our knowledge, all environmental samples were
from households whose occupants are not known to have NTM lung disease; thus, it will be
imperative to sample NTM patient households in a larger future study especially as a more
thorough comparison of prevalence and numbers of NTM species in patients and their local
environment can be assessed. We were also unable to confirm that the clinical isolates used in
this study were etiological agents of respiratory disease or due to benign colonization from
environmental exposures. Additionally, this pilot clinical isolate panel did not contain any
RGM. Nevertheless, the observation that M. chimaera was the most common species in both
environmental and clinical isolates examined suggests the possibility of environmental expo-
sures and clinical NTM lung disease. To determine whether NTM in the household environ-
ment contributes to clinical disease, we hope to initiate a large-scale genomic study of matched
household and clinical NTM isolates from NTM-infectedHawai’i patients who fulfill ATS/
IDSA criteria for lung disease. Undoubtedly, the data collectively presented in this study will be
valuable in guiding the design of a more comprehensive study.

In summary, this study describes environmental sampling, microbiological selection, and
molecular identification to determine the NTM species diversity in the Hawaiian Island envi-
ronment. The observation that M. chimaera was the most common NTM species identified in
both our Hawai’i environmental samples as well as in a small sampling of respiratory speci-
mens from patients with suspectedmycobacterial lung disease suggests that M. chimaera may
be an important environmentally acquired respiratory pathogen. Furthermore, M. chimaera
may be unique in prevalence in tropical climates such as Hawai’i. Additional studies with sys-
tematic collection of matched environmental and respiratory specimens, high-resolution geno-
typing methods, and correlation with demographic and epidemiological data (i.e. age, gender
together with ethnicity and host risk and genetic factors) will be necessary to further character-
ize this observation and the important clinical implications.
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