The role of the laboratory

Jakko van Ingen, MD, PhD Nijmegen, the Netherlands

NTM teamplay

- 'Dekkerswald' sanatorium
- Multidisciplinary NTM team
 - Pulmonologists
 - Infectious Diseases
 - Pharmacists
 - Radiologists
 - Clinical microbiologists
- NTM research laboratory

Take home messages

The role of the laboratory:

• Detection & identification of NTM

- Drug susceptibility testing
- Treatment effect monitoring

How does it help:

Establishing the diagnosis

Aid in antibiotic regimen design

Monitor the effect of treatment

Detection and identification

Sample preparation

- Sample quality / purulence
- Decontamination
- Monitor contamination rate (5%)

- Smear microscopy (auramine stain)
- PCR for detection of NTM DNA

Culture – the long wait

- Liquid medium (broth)
- Solid medium
 - Löwenstein-Jensen
 - Middlebrook 7H10/7H11
- Combination is 10% more sensitive
- Qualitative assessment (pos / neg)
- Quantitative assessment (TTP / SQS)

Identification – *nomen est omen*

- Molecular techniques preferred
 - Probes / line probe assays
 - (multi)gene sequencing
 - Whole genome sequencing
- 'New' kid on the block: MALDI-TOF-ms
 - Time-of-flight mass spectrometry
 - (ribosomal) protein content

Center for Infectious Diseases

Clinical relevance of pulmonary NTM isolates in NL

(% of patients who met ATS/IDSA diagnostic criteria, per species)

van Ingen J et al., Thorax 2009 van Ingen J et al., Infect Gen Evol 2011 ; Zweijpfenning S, et al. Resp Med 2017 Center for Infectious Diseases

Drug susceptibility testing

Basic criteria for DST

- DST is useful if:
- 1. There is an infection/disease that needs antimicrobial therapy
- 2. Effective antimicrobial drugs are available to the patient
- 3. The activity of the drugs *in vitro* (in the lab) is related to their effect *in vivo*

Center for Infectious Diseases

Radboudume

4. The *in vitro* activities of the drugs vary (e.g. resistance can emerge)

CLSI document M24-A3, 2018 van Ingen J, et al. *Drug Resistance Updates* 2012

Drug susceptibility testing of NTM

- The recommended method: broth microdilution
- Which concentratation of drug X kills my NTM?
- Minimum inhibitory concentration: MIC

- MIC = 'susceptible' or 'resistant'
 - Dictated by guidelines

Center for Infectious Diseases Radboudumc

CLSI document M24-A3, 2018 van Ingen J, et al. *Drug Resistance Updates* 2012

What does 'resistant' really mean?

- Historically: abnormal high MIC
- Today: PK/PD science
 - Drug exposure/MIC ratio
 - Exposure-outcome relationships
 - MIC-outcome relationships
- Known for macrolides and amikacin
- Evolving science in NTM disease

CLSI document M24-A3, 2018 van Ingen J, et al. *Am J Respir Crit Care Med* 2012

Center for Infectious Diseases

Radboudumc

What does resistance really mean (2)

- Enter: the hollow fiber model
- Build the human lung environment
 - Macrophages infected with NTM
- Deliver antibiotic as in real life
 - Using different daily doses
- Examine the survival of NTM
- C/ Dose drug X (MIC Y) at dose Z work?

Ruth MM, et al. Journal of Antimicrobial Chemotherapy 2019 (minocycline)

Focus: M. abscessus and macrolides

- *M. abscessus* has the *erm*(41) gene
 - <u>Erythromycin Resistance Methylase</u>
- *Inducible* macrolide resistance
- Induced equally by clarithro and azithro
- *M. abscessus* subsp. *massiliense*: *erm* deletion
- Rare: *M. a.* subsp. *abscessus*: *erm* mutation
- Can *develop* 23S mutational resistance on top

Schildkraut JA, et al. *Future Microbiology* 2019 van Ingen J, et al. *Drug Resistance Updates* 2012

M. a. abscessus	MIC (mg/L)		
	Day 3	Day 7	Day 14
Azithromycin	4	64	128
Clarithromycin	0.5	>16	>16

Monitoring the effect of treatment

Monitoring the effect of treatment

- Time-to-culture-positivity / semi-quantitative scale
 - Follow the bacterial load over time during treatment
- Culture conversion
- Definition: ≥3 consecutive negative cultures from samples 4 weeks apart
 - sampling date of the first negative culture is date of culture conversion
- Relapse or reinfection?
- DNA fingerprinting -> whole genome sequencing
- Acquired drug-resistance?

van Ingen J, et al. NTM-NET. *European Respiratory Journal* 2018 Slaats M, et al. *European Respiratory Journal* 2016

Take home messages

The role of the laboratory:

۲

- Detection & identification of NTM
- Drug susceptibility testing
- Treatment effect monitoring

How does it help:

Establishing the diagnosis

Aid in antibiotic regimen design

Monitor the effect of treatment

Thank you very much for your attention

Acknowledgements

Radboud University Medical Center NTM team Wouter Hoefsloot Martin Boeree **Cecile Magis** Sanne Zweijpfenning Saskia Kuipers Rob Aarnoutse Reinout van Crevel Frank van de Veerdonk Mike Ruth Jodie Schildkraut

Center for Infectious Diseases