
information could be even more successful and is of particular
importance in mild OSA.

The use of machine learning and predictive analytics across
various platforms is vital for implementation efforts aimed at bringing
billions of dollars of research findings to the bedside (14). Our
eagerness to implement these modern tools needs to be balanced
with a careful understanding of the setting and real-world
circumstances of the implementation efforts. Hornero and colleagues
have taken an important step toward automated detection of OSA in
children (13). The real-world implementation of the clinical
prediction pathway incorporating the machine learning technique
proposed by Hornero and colleagues awaits further testing (13). n
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Moving Nontuberculous Mycobacteria Infections into the 21st Century

During the last many years, pulmonary physicians have become
increasingly familiar with, and often vexed by, patients with
infections caused by nontuberculous mycobacteria (NTM).
These NTM infections now outnumber cases of tuberculosis (TB)

in the United States (1), but research about these infections has
lagged far behind that of TB. The list of important unanswered
questions about NTM infections is long (2): Why are some bacteria
pathogenic and others not? Are there particular environmental
factors or exposures that predispose to NTM infections? What is
the best way to diagnose a clinically important infection? What is
the natural history of NTM infection? How should patients with
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NTM infection or colonization be assessed and monitored for
progression? Which patients require antibiotic treatment? What is
the proper antibiotic treatment? Are there host factors that
predispose toward infection with NTM?

For many years, it had been felt that Mycobacterium avium
complex (MAC) pulmonary infection closely mimicked
tuberculosis and occurred mainly in men with underlying
pulmonary disease (3, 4). A more nuanced understanding was
provided by Prince and colleagues in a series of patients, mostly
women, without underlying disease and largely without cavitary
lesions (5). In 1992, Reich and Johnson described six elderly
women with positive sputum cultures for MAC who had
noncavitary parenchymal infiltrates, mostly in the lingula and
middle lobe (6). They ascribed this syndrome to voluntary
suppression of cough, resulting in retained secretions and focal
bronchiectasis that created a favorable environment for growth
of MAC. They termed this syndrome of MAC infection in
previously well women without cavitary lesions Lady Windermere
syndrome, after the title character in Oscar Wilde’s 1892 play, Lady
Windermere’s Fan. The physiologic mechanism they proposed
seems somewhat far-fetched: they posited that there was voluntary
suppression of cough, citing the aphorism (previously unknown
to me) that “ladies don’t spit” (6). The literary reference is
misleading as well. In Wilde’s play, Lady Windermere is a young
woman on the eve of her 21st birthday (7). Her fan, a gift from
her husband, is both a symbol of Victorian modesty and a plot
device that leads to the play’s main dramatic twist. No one in the
play, it appears, has a significant pulmonary problem.

It seems long past time to retire the inaccurate eponym of
Lady Windermere syndrome (8). However, despite the misleading
literary reference and unlikely medical reasoning, Reich and
Johnson nonetheless described a group of patients now very
familiar to pulmonologists. More detailed descriptions were
provided by Kim and colleagues a decade ago (9). There seems
to be a distinct group of taller women, often with skeletal
abnormalities such as scoliosis or pectus deformities, with nodular
infiltrates and bronchiectasis rather than cavitary lesions, with
no obvious evidence of immunodeficiency, and often with cystic
fibrosis transmembrane conductance regulator mutations, although
without cystic fibrosis, who have sputum cultures positive for
Mycobacterium avium complex organisms. In this issue of the
Journal, Chen and colleagues (pp. 1599–1604) seek to understand
whether in fact there are host genetic factors in such patients that
create vulnerability to MAC infection (10).

In a cohort drawn from familial and sporadic cases of pulmonary
NTM infection, whole-exome sequencing and linkage analysis were
performed in hopes of identifying genes that might be associated with
the clinical syndrome. Investigators were able to map a region on the
long arm of chromosome 6 that had a significant linkage association
with familial NTM infection, and further work refined the strongest
association to the TTK protein kinase gene (TTK) on chromosome
6q14.1. Several other genes (MAP2K4, RCOR3, KRT83, IFNLR1, and
SLC29A1) also were associated with NTM infection, although not
quite as strongly as TTK.

Although there was clear genetic linkage between TTK and
NTM infections in the cohort studied, the biological and
mechanistic linkage is less clear. With a not particularly rare allelic
frequency of 0.05, the contribution of the gene to overall genetic
susceptibility may be small (11), but understanding its functional

significance may provide important insight into disease
pathogenesis, and possibly into the development of so-called host-
directed therapies for patients with NTM infections. TTK encodes
a protein kinase that is a component of the nuclear spindle
assembly checkpoint, which is a surveillance mechanism that
ensures the fidelity of chromosome segregation during cell division
and replication (12). This protein has been a target of great interest
in oncology research, as small molecule inhibitors of TTK kinase
activity lead to cancer cell death by apoptosis (13). TTK kinase
inhibitors are in early stages of clinical testing for a variety of
tumors. The genes MAP2K4 and IFNR1, rare variants of which
were also linked to NTM infection, if somewhat less strongly than
TTK, have been linked to susceptibility to other infectious
diseases, mostly viral infections, through modulation of T-cell
function (14). A great deal of work lies ahead to elucidate the
possible role of TTK and of the other genes identified in this article
in susceptibility to infection with NTM.

It is important to note that the patients included in this report
may not be representative of all patients with NTM infections.
In the absence of mandatory reporting for NTM, data about
the typical patient with NTM are difficult to come by, but
several clinical syndromes have been described (15). Nodular
bronchiectatic forms of pulmonary NTM infection, usually caused
by MAC, are well-recognized, but cavitary disease is also well-
known in MAC infection, and overall, the female:male distribution
may not be as markedly skewed as is the general impression.
A study by Henkle and colleagues in Oregon developed
population-based estimates of the epidemiology of NTM
infections in that state and found that the median age of patients
was 69 years, but there was only a modest sex predominance,
with 56% females (1). Among patients younger than 60 years,
54% were males. Radiographic and clinical features of patients
could not be determined.

Chen and colleagues have provided elegant evidence of genetic
influences on susceptibility to infection with NTM, and their study
adds significantly to our understanding of host factors linked to
these infections (10). Physicians and patients alike are in the
frustrating situation of having many more questions than answers
about NTM infections. Studies such as this one, reporting on genetic
associations for NTM infections, represent an important step forward
in elucidating fundamentally important disease mechanisms. n
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